Biochar Use In Viticulture

Report prepared by :

USBI

Biochar has been successfully used in viticulture to boost productivity through improved plant and soil health without negative effects to the grape or wine flavor. There is a large body of research supporting the application of biochar in viticulture specifically, as well as in soils and compost generally.

With biochar matched appropriately to the soils at establishment, growers have seen a 2 to 3 harvest payback on their investment. The increasing need for improved water management is one of the prime benefits seen in vineyards, and that need is expected to intensify as a changing climate affects water availability further. An additional benefit to an investment in biochar is its longevity—measured in decades to millennia—which also opens the potential for economic benefit from the developing carbon credit markets.

Biochar is the product of heating organic feedstocks¹ in a low oxygen environment, a process called pyrolysis. Biochar's primary characteristic is its large surface area, which allows it to address these grape grower's needs:

- Increase water retention
- Increase soil carbon
- Nutrient release leveling
- Soil structure management
- Soil biota improvement
- Soil contamination mitigation
- Pruning and marc disposal (by serving as a feedstock for biochar production)

From the growers' experiences provided in the full report ², you can see there have been significant successes using biochar in vineyards. The clearest benefit of biochar is its water holding capacity, but the nutrient leveling effects and increased soil carbon (SOM) are also demonstrated in grower's increased productivity. While the soil characteristics were not identified by most growers, it's a critical factor when considering biochar enhancement, whether in the soil or as compost/mulch.

¹Feedstocks range from woody to grassy, bones, manure, livestock litters, and other inputs to create specialized chars.

²Dovetail Report: Biochar Use in Viticulture

THIRD HARVEST REPORT, OASIS VINEYARD FIELD TRIAL WITH BIOCHAR AND COMPOST - <u>https://pacificbiochar.com/vineyard-field-trial-with-biochar-and-compost_-3rd-harvest-report/</u>

Meta-analysis review, Schmidt et al, 2021 - https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12889

Biochar Use in Viticulture: Project Team

- Kathleen Draper, Chair, International Biochar Initiative
- Harry Groot, Dovetail Partners
- Ashley McFarland, *Dovetail Partners*
- Tom Miles, Chair, US Biochar Initiative

The work upon which this presentation is based is funded through a grant awarded by the US Forest Service Wood Education Resource Center's Wood Innovation Grant 20-DG-11083150-011

Project Overview

- The project explored the potential for using biochar in three applications:
 - Viticulture, Livestock and Poultry, and Stormwater Management.
- The process used was to:
 - Interview experienced users
 - Review relevant published scientific research
 - Analyze needs of users and other market data
 - Provide educational outreach
 - Reports
 - Webinars

Report Highlights

- Biochar has been successfully used in viticulture to boost productivity through improved plant and soil health without negative effects to the grape or wine flavor.
- There is a large body of research supporting the application of biochar in viticulture specifically, as well as in soils and compost generally.
- There are many suppliers of biochar in the major grape growing regions of the US.

Today's Speakers

- Kathleen Draper-Finger Lakes Biochar (NY), Co-Author of *Burn-Using Fire to Cool the Earth*, IBI Chair, USBI Board member
- Josiah Hunt-Pacific Biochar Benefit Corp., USBI Board member
- Doug Beck-Monterey Pacific Inc.

Practical Application of Biochar in Vineyards

Doug Beck Monterey Pacific Inc. Josiah Hunt Pacific Biochar Benefit Co.

"When the carbon is worth more in the ground than it is in the furnace..."

Farmland Improvement, Potting Media, etc.

Carbon Dioxide Removal, Voluntary Markets

Farmland Improvement, Potting Media, etc. Beerived: 22 Mity 2021 | Bevied: 17 August 2021 | Accepted: 12 August 2021 DOI:10.1111/jgeb.12899 ~2

RESEARCH REVIEW

GCB-BIOENERGY

Biochar in agriculture – A systematic review of 26 global meta-analyses

Hans-Peter Schmidt¹ | Claudia Kammann² | Nikolas Hagemann^{3,4} | Jens Leifeld⁴ | Thomas D. Bucheli⁴ | Miguel Angel Sánchez Monedero⁵ | Maria Luz Cayuela⁵ |

FIGURE 2 Selected parameters with highest agronomic relevance that were investigated in the 26 reviewed meta-analyses. The mean overall effect size (% change) and 95% confidence intervals are given as reported in the original studies. The numbers in parentheses indicate the number of pairwise comparisons used for that specific parameter

Burn to generate electricity?

Pyrolize to biochar, and bury?

Oasis Vineyard Biochar Trial

California Dept. of Water Resources, University of California - Riverside, Sonoma Ecology Center, Monterey Pacific Inc, & Pacific Biochar

Oasis Vineyard Trial 2017-2020

Treatments:

All treatments applied at depth down planting row (delved) in random pattern (4 replicates) across 8 acre trial area with standard annual fertilizer applications across all blocks

- a. Control o tons/acre compost, o tons/acre biochar
- Compost 15 15 tons/acre compost
- c. Biochar 10 10 tons/acre biochar
- d. Compost + Biochar 15 tons/acre compost, 10 tons/acre biochar

%OM Ca	Iculations for Vineyar	d Treatments					
Cultivated	Area_ Soil Volume and W	eight					
Cu ft / vine	vine / acre	cu ft / acre	cu yd / acre	soil density g/cm	soil density ton/cy	tons soil/acre	
25	1089	27225	1008	1.3	1.10	1104.64	
Biochar Ap	plication Rate_ Ton/acre	Input, %OM Output					
	biochar applied (wet ton)	biochar moisture %	biochar applied (dry ton)	biochar OM content	tons OM applied	% SOM achieved	
Biochar	10.00	38%	6.18	74.50%	4.60	0.42%	
Compost A	pplication Rate_ Ton/ac	e Input, %OM Outpu	,it				
	compost applied (wet ton)	compost moisture %	compost applied (dry ton)	compost OM content	tons OM applied	% SOM achieved	
Compost	15.00) 49%	7.70	42.50%	3.27	0.30%	4

Harvest 2019 3rd Leaf	Yield	Cluster #	Cluster lb
R1	2.78	26.40	0.31
R2 Control	3.73	28.70	0.27
R3	2.82	23.10	0.25
R4	2.42	26.30	0.31
Control Average	2.94	26.13	0.29
R1	4.04	30.60	0.27
R2 Compost	3.30	27.10	0.25
R3	4.20	33.20	0.26
R4	4.02	27.60	0.30
Compost Average	3.89	29.63	0.27
R1	3.94	28.50	0.29
R2 Biochar	4.90	39.60	0.26
R3	3.63	27.30	0.28
R4	4.55	33.30	0.28
Biochar Average	4.26	32.18	0.28
R1	3.78	26.80	0.29
R2 Compost + Biochar	3.58	24.40	0.30
R3	3.83	36.90	0.21
R4	4.08	31.50	0.27
Compost-Bio Average	3.82	29.90	0.27

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 ₀	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster Ib
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Harvest 2021 5th Leaf	Yield	Cluster #	Cluster lb
R1	2.897	25.40	0.21
R2 Control	3.376	30.25	0.20
R3	4.438	56.15	0.15
R4	4.62	48.60	0.17
Control Average	3.833	40.10	0.18
R1	4.397	33.40	0.24
R2 Compost	3.762	37.20	0.19
R3	6.044	49.65	0.22
R4	7.193	65.85	0.20
Compost Average	5.349	46.53	0.21
R1	4.108	32,30	0.23
R2 Biochar	5.418	45.40	0.22
R3	6.161	52.95	0.21
R4	5.685	50.05	0.21
Biochar Average	5.343	45.18	0.22
R1	4.775	36.50	0.24
R2 Compost + Biochar	6.382	41.00	0.29
R3	7.914	63.80	0.23
R4	7.533	68.30	0.20
Compost-Bio Average	6.651	52.40	0.24

Yield, Percent Above Control, 3 Harvests

Harvest Years

Yield, Percent Above Control, 3 yr Average Control 📕 Compost 📒 Biochar Compost + Biochar 50.00% 40.00% 30.00% 20.00% 10.00% 0.00%

Compost Analysis

Nutrients	Dry wt.	As Rcvd.	units	Stability Indica	ator:		Biologically
Total Nitrogen:	1.5	0.79	%	CO2 Evolution	1	Respirometery	Available C
Ammonia (NH ₄ -N):	18	9.1	mg/kg	mg CO ₂ -C/g OI	M/day	0.73	1.0
Nitrate (NO ₃ -N):	450	230	mg/kg	mg CO ₂ -C/g TS	S/day	0.31	0.44
Org. Nitrogen (OrgN):	1.5	0.77	%	Stability Rat	ing	very stable	very stable
Phosphorus (as P2O5):	3.7	1.9	%				
Phosphorus (P):	16000	8300	mg/kg				
Potassium (as K ₂ O):	7.9	4.1	%	Maturity Indica	ator: Cucum	ber Bioassay	
Potassium (K):	66000	34000	mg/kg	Compost:Verm	iculite(v:v)	1:2	
Calcium (Ca):	27	14	%	Emergence (%))	93	
Magnesium (Mg):	2.7	1.4	%	Seedling Vigor	(%)	109	
Sulfate (SO ₄ -S):	4000	2000	mg/kg	Description	of Plants	healthy	
Boron (Total B):	110	58	mg/kg				
Moisture:	0	48.7	%				
Sodium (Na):	1.6	0.83	%	Pathogens	Results	Units	Rating
Chloride (CI):	0.83	0.43	%	Fecal Coliform	8.5	MPN/g	pass
pH Value:	NA	7.59	unit	Salmonella	< 3	MPN/4g	pass
Bulk Density :	21	41	lb/cu ft	Date Tested: 20 A	vpr. 16		
Carbonates (CaCO ₃):	130	66	lb/ton				
Conductivity (EC5):	13	NA	mmhos/cm				
Organic Matter:	42.5	21.8	%	Inerts	% by weigh	t	
Organic Carbon:	22.0	11.0	%	Plastic	< 0.5		
Ash:	57.5	29.5	%	Glass	< 0.5		
C/N Ratio	14	14	ratio	Metal	< 0.5		
AgIndex	5	5	ratio	Sharps	ND		

P per ton Compost at 8,300 ppm is about 17 lb/ton =255 lb P per 15 tons compost or <u>0.26 lb/vine</u>

K per ton Compost at 34,000 ppm is about 68 lb/ton or =1,020 lb K per 15 tons compost or <u>1 lb/vine</u>

Biochar Analysis

International BioChar Initiative (IBI) Laborator	y Tests for Certification Program
--	-----------------------------------

	Dry Basis Unless Stated: Range	Units	Method	
Moisture (time of analysis)	38.2	% wet wt.	ASTM D1762-84 (105c)
Bulk Density	10.6	lb/cu ft		
Organic Carbon	68.0	% of total dry mass	Dry Combust-AST	M D 4373
Hydrogen/Carbon (H:C)	0.30 0.7 Max	Molar Ratio	H dry combustion/	C(above)
Total Ash	25.5	% of total dry mass	ASTM D-1762-84	
Total Nitrogen	0.69	% of total dry mass	Dry Combustion	
	Ba	sic Soil Enhancement	Properties	
	To	tal (K)	19554 mg/kg	Е
	То	tal (P)	2738 mg/kg	E
	Am	nmonia (NH4-N)	13.4 mg/kg	A
	Nit	rate (NO3-N)	10.2 mg/kg	Α
	Org	ganic (Org-N)	6856 mg/kg	Calc.

P per ton Biochar at 2,738 ppm dry weight is about 3 lbs per ton as delivered

=33 lb P per 10 tons biochar or <u>0.03 lb/vine</u> **K per ton Biochar** at 19,554 ppm dry weight is about 23 lb/ton as delivered

=230 lb K per 10 tons biochar or 0.24 lb/vine

1	itratable /	Acidity	
AVERAGES	mg/L	% difference	ST DEV
Control	6.425	0.00%	0.26
Compost	6.375	-0.78%	0.29
Biochar	6.375	-0.78%	0.33
Com+Biochar	6.25	-2.72%	0.24
	pl	H	
AVERAGES	pН	% difference	ST DEV
Control	3.3925	0.00%	0.08
Compost	3.4125	0.59%	0.09
Biochar	3.4275	1.03%	0.12
Com+Biochar	3.4575	1.92%	0.09
	Bri	x	
AVERAGES	brix	% difference	ST DEV
Control	23.875	0.00%	1.01
Compost	23.35	-2.20%	0.47
Biochar	24.25	1.57%	0.99
Com+Biochar	23.75	-0.52%	0.87

4th Leaf Grape Quality

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 ₅	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

	Berry Weig	ht	
AVERAGES	g/berry	% difference	ST DEV
Control	1.3675	0.00%	0.02
Compost	1.33	-2.74%	0.05
Biochar	1.3925	1.83%	0.05
Com+Biochar	1.3575	-0.73%	0.02
	Berry Volur	ne	
AVERAGES	ml/berry	% difference	ST DEV
Control	1.1475	0.00%	0.04
Compost	1.185	3.27%	0.07
Biochar	1.24*	8.06%	0.08
Com+Biochar	1.15	0.22%	0.03
	Sugar per B	Berry	
AVERAGES	mg/berry	% difference	ST DEV
Control	271.5	0.00%	12.48
Compost	273	0.55%	16.15
Biochar	298.5*	9.94%	12.79
Com+Biochar	270.5	-0.37%	16.82

4th Leaf Berry Size

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 _m	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

P	olymeric /	Anthocyanins	
AVERAGES	mg/L	% difference	ST DEV
Control	6.25	0.00%	0.9574
Compost	6.00	-4.00%	0.0000
Biochar	6.50	4.00%	0.5774
Com+Biochar	5.75	-8.00%	0.5000
	Tannii	n	
AVERAGES	mg/L	% difference	ST DEV
Control	207.50	0.00%	18.9473
Compost	200.25	-3.49%	18.9978
Biochar	211.75	2.05%	22.3961
Com+Biochar	201.00	-3.13%	20.4124
Т	otal Antho	ocyanins	
AVERAGES	mg/L	% difference	ST DEV
Control	627.50	0.00%	63.1057
Compost	628.50	0.16%	15.3514
Biochar	659.75	5.14%	49.5202
Com+Biochar	642.50	2.39%	60.7317

4th Leaf Grape Color?

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster Ib
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 ₅	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Economic Return Assessment on Biochar-Only Application

- Yield Increase 3rd Leaf
 - 2019 +biochar=1.3 ton/acre increase
 Grape price \$1500/ton
 - Additional revenue/acre = **\$1,950**
- Yield Increase 4th Leaf
 - 2020 +biochar = 1.1 ton/acre increase
 - Grape price \$1500/ton
 - Additional revenue/acre = **\$1,650**
 - No further amendments cost
- Yield Increase 5th Leaf
 - 2021 +biochar = 1.5 ton/acre increase
 - Grape price \$1500/ton
 - Additional Revenue = **\$2,250**

- Biochar cost
 - 10 ton/acre
 - Biochar cost \$240 per ton
 - Cost/acre = **\$2,400**
 - Return on Investment
 - Additional revenue \$5,850/ac first 3 producing years, <u>\$3450 above cost</u>
 - Assume additional per year of 0.5 t/ac over no amendments, \$5,250 extra/ac over the next 7 years
 - Potentially added \$8,700 income/ac
 over 10 yrs harvesting

Additional revenue above cost for inputs

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 ₅	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Biochar and Composting

CO-COMPOSTING, BLENDING, & AGING

• Compost is improved

- Odor control (i.e. ammonia)
- GHG emission reduction (i.e. CH_{a} , $N_{2}O$, etc.)
- Reduced nutrient loss, especially N
- Increased microbial activity & diversity
- Maturity and stability superior

• Biochar is improved

- Complexed surface becomes more functional
- Microbial colonization
- Nutrient loading
- Better plant growth response

Biochar and Soil Biology

MICROBIAL HABITAT & ROOTS

- Air, water and nutrients are retained in pores and on surfaces
- Organic coating forms on surfaces over time (i.e. biochar "aging")
- Efficient electron transfer reactions
- Studies consistently demonstrate enhanced biological activity and diversity in soils using biochar

Scanning Electron Microscope Photos of Biochar

Mycorrhizal spore extending hyphae into biochar particle. Photo courtesy of Ogawa [8]

Surface complexing during composting. Photo courtesy of Yoshizawa [9]

Biochar ??

Compost

Fig. 10. Schematic cross sectional views of two vine rows showing (a) the most common elements of soil compaction in vineyards and illustrating restricted lateral vine root growth associated with wheel traffic compaction (b) amelioration of wheel, midrow and under-vine crusts and tillage pan compaction showing possible expansion of the vine root system. The under-vine cover crop is represented as being controlled by herbicide application during the growing season.

From A. Cass, 2007 Australian Grape Grower and Winemaker, Annual Technical Issue

Nitrogen Management

Soil Health

Water Use Efficiency

Carbon Sequestration

Soil Management

More Efficient Conventional and Organic Systems

Resources

- > Webinar recording link will be posted at Dovetail, USBI, and IBI
- Biochar Use in Viticulture full report: www.dovetailinc.org/portfoliodetail.php?id=61688a6830537
 For (www.dovetailinc.org) Click Reports tab for the full library
- USBI-(biochar-us.org) broad array of US resources including biochar suppliers www.usbi.org
- International Biochar Initiative-(biochar-international.org) links to biochar related research, analytical resources, educational material, and links to international biochar networks.

Q1: Is biochar use in vineyards analogous to other fruit orchards (such as small acreage mixed species back yard orchards)?

HG: Generally, yes. It depends on your soil analysis and the biochar analysis to be certain. I mix the biochar I make with barn bedding and other compostable material and we use it on all our orchard, vine, bush, and garden crops.

2: Josiah: Can you comment on capture/use of CO2 and volatiles from your biochar production facility?

Answered Live; see recording for a live answer/discussion of this question

3: Can you send us the links shared in the slides to learn more about biochar?

Answered Live; see Kathleen's slide in the recording or in the resources at the post-webinar information page

4: Josiah. Can I get the slide on char benefits with number of studies done?

See the resources at the post-webinar information page

5: What if your soils already have 2.5-3.5% organic matter, and plant growth is already more than adequate? What benefits would you see?

DB: The benefits will likely be less and take more time than in a low organic matter soil, but you will definitely see improvement in soil structure and nutrient availability over time.

6: Cluster weights remained the same but how was quality evaluated? Only metrics or blind tasting as well?

Answered Live; see recording for a live answer/discussion of this question

7: Are you adding 10 tons/acre biochar annually? Or just prior to planting?

Answered Live; see recording for a live answer/discussion of this question

8: What was the biochar volume for 10 tons?

Josiah: 40 to 45 cubic yards.

9: Does the biochar with compost give a difference in berry size?

DB: Berry size was not increased over control in the compost-biochar treatment.

10: Did you experiment with non-irrigated plots as well ?

Answered Live; see recording for a live answer/discussion of this question

11: The control was irrigated - was there any additional plant nutrients in either the water or into the soil?

DB: We did fertilize annually through the drip system (fertigate), with N&P during the spring and K after set and at veraison. All blocks received the same regime.

12: What is the source for the compost? Was it municipal created?

Answered Live; see <u>recording</u> for a live answer/discussion of this question

13: Did you evaluate the soil biology of the compost and the compost + biochar? If yes, what were the results?

DB: No, we did not.

14: Is there potential for use of conifer bark in biochar?

Josiah: yes

15: Once you've ripped the pan and applied compost+biochar, I assume you establish a permanent cover crop to allow vines to spread roots. So how long will the compost in the combination last?

DB: That question will be answered with data in the coming years.

16: It looks like you do pretty intensive canopy management. Should we assume that some of the improvement in Brix is due to the ability of the vine to perform ripening while not putting the additional energy into vegetative growth due to your canopy management practices?

Answered Live; see recording for a live answer/discussion of this question

17: To Josiah: Can you be profitable with a biochar sales price of \$240 per ton?

Josiah: The biochar provided was \$240 per wet ton, and about 45% moisture content. At the time of delivery, January 2017, this price was not profitable.

18: What an inspiring study! How can other vineyard owners be encouraged to adopt biochar?

DB: Farmers are seeing-is-believing people, and the best way to encourage them to use biochar is to conduct trials similar to this one on different soils in different agroenvironments.

19: Did you say the biochar-compost application was annual? Can you say what the ton/per acre was in the study?

DB: The biochar-compost addition was made pre-planting, and not repeated thereafter. The total tons/acre in this treatment was 25... 15 tons compost mixed with 10 tons biochar

20: I am looking for a business plan template that demonstrates the feasibility of biochar application to soil. Is there such a document available?

DB: Not known

21: What company is the primary supplier of the BioChar?

Answered Live; see recording for a live answer/discussion of this question; Pacific Biochar

22: How do you claim the carbon credits from your process?

HG: There was some discussion of this during the webinar, and an online response of Carbonfuture.earth was provided. You can see a more complete discussion of carbon credit options in the <u>full report</u>

23: Is biochar effective as a soil additive when existing soils are high pH?

A: yes, the soils in this study are above 7.

24: is there any pest or disease attack was observed?

DB: We had a sizable population of ground squirrels in this block, affecting rep 1 more than the rest. The rodents didn't seem to like one treatment over the other.

25: Can you clarify again the application rate of Biochar. My understanding is 10 ton/acre but is the based on the trench size or the overall size of the field?

DB: The 10 t/a biochar was applied to a strip 2.3ft wide by 2.5 ft deep, so the rate in that area is actually about 30 tons per acre.

26: Have you considered introducing a fine dispersible biochar in to the irrigation system?

HG: I have heard from practitioners that plugging of emitters and erosion of pumps and piping has been a problem with this technique.

DB: We have tried micronized compost through the drip lines, but had trouble with clogging filters and we didn't see any response to the applications.

27: And again, per the chat -- a lot of this kind of research can be done without external funding as people put in new vineyards and modify existing ones. This kind of "natural history experiment" gets used all the time in medicine and in educational research to leverage such circumstances.

DB: And is exactly what I am hoping will take place as we go forward....

28: Are there any tips for maximizing the water use efficiency benefits when using biochar (and/or biochar + compost) in a vineyard?

DB: Install and monitor soil profile water with soil moisture sensors, so you know what is going on at depth and can adjust your irrigations accordingly.

29: When you say more research is needed to see if there are better measurements, is that regarding the possibility that the biochar will aid better capture when sequestered ?

Josiah: Not sure what this question is referencing. As a note, there is opportunity for more data collection in this field trial if sufficient funding can be secured.

30: Was there any Sap/tissue testing done with the use of the compost and or biochar and was there any biological testing done such as quantitative SFW assessment?

DB: Tissue testing was done early in the trial but didn't show much differences. We decided to use vine growth and yield as our measures of impact.

31: I would be useful if you put up the links you show in your presentations.

International Biochar Initiative: <u>https://biochar-international.org/</u> US Biochar Initiative: <u>https://biochar-us.org/</u> Biochar Journal: <u>https://www.biochar-journal.org/en</u> Week of Jan 17: new IBI Podcast series focusing on Biochar production technologies Jan 25 IBI Webinar: Biochar Use in Agriculture – What the Science Tells Us <u>https://biocharinternational.org/webinars/biochar-use-in-agriculture/</u> Jan 27 (virtual), Feb 1 -3 (Chico, CA) Biochar in the Woods: <u>https://www.eventbrite.com/e/biochar-in-thewoods-learn-how-to-use-biochar-for-forest-resilience-tickets-207366166787</u> March 30 – 31 Bio360: Nantes, France <u>https://www.bio360expo.com/Default.aspx?language=en</u> Aug 9 – 11 USBI Conference (Morgantown, WV) On-line biochar forum: <u>https://biochar.groups.io/g/main/topics</u> Vineyard Field Trial Results, Third Harvest - <u>https://pacificbiochar.com/vineyard-field-trial-with-biochar-</u> and-compost -3rd-harvest-report/ -